How is volume depletion managed in prerenal azotemia?

Updated: Apr 24, 2020
  • Author: Moro O Salifu, MD, MPH, FACP; Chief Editor: Vecihi Batuman, MD, FASN  more...
  • Print

If volume depletion is due to free water loss, the serum sodium is often elevated by 10 mEq/L from baseline. The amount of fluid replacement in liters—that is, the free water deficit—can be estimated from serum sodium (mg/dL) and patient weight (kg) as follows:

[(Na/140) – 1] × 0.5 × weight

The volume of fluid to be administered is equal to the sum of the free-water deficit and daily maintenance fluids. Fifty percent of this total volume should be administered in the first 24 hours, and a new calculation should be performed at 24 hours based on new laboratory results.

Maintenance fluid can be roughly estimated at 1.5-2 L/day; however, it can also be estimated from caloric intake since 1 kCal requires 1 mL of water in the metabolic process. Normal caloric intake is about 30 Kcal/kg (low catabolic state requires < 30 kCal/kg and high catabolic state requires >40 kCal/kg). A 70-Kg person at normal caloric intake requires 2100 Kcal/day or 2.1 L of fluid intake. This volume should be added to the free-water deficit and administered as noted above.

Alternatively, the total free water deficit is usually quite close to the sum of 50% free-water deficit and daily maintenance fluids. Therefore, for all practical purposes, the total free-water deficit can be administered intravenously in 24 hours.

Serum sodium should be measured every 6-8 hours, and fluid replacement should be adjusted to avoid a precipitous decline in the serum sodium. To prevent brain edema, the rate of decrease in serum sodium should be no more than 0.7 mEq/h (17 mEq/24 h).

Volume depletion due to blood loss requires IV saline and transfusion to maintain pressure (as well as interventions to halt further loss).

Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!