What is the resistance of Enterobacter infections to antibiotics?

Updated: Dec 05, 2018
  • Author: Susan L Fraser, MD; Chief Editor: Michael Stuart Bronze, MD  more...
  • Print
Answer

With rare exceptions, E cloacae, E aerogenes, and most other Enterobacter species are resistant to the narrow-spectrum penicillins that traditionally have good activity against other Enterobacteriaceae such as E coli (eg, ampicillin, amoxicillin) and to first-generation and second-generation cephalosporins (eg, cefazolin, cefuroxime). They also are usually resistant to cephamycins such as cefoxitin. Initial resistance to third-generation cephalosporins (eg, ceftriaxone, cefotaxime, ceftazidime) and extended-spectrum penicillins (eg, ticarcillin, azlocillin, piperacillin) varies but can develop during treatment. The activity of the fourth-generation cephalosporins (eg, cefepime) is fair, and the activity of the carbapenems (eg, imipenem, meropenem, ertapenem, doripenem) is excellent. However, resistance has been reported, even to these agents.

The bacteria designated by the acronym SERMOR-PROVENF (SER = Serratia, MOR = Morganella, PROV = Providencia, EN = Enterobacter, F = freundii for Citrobacter freundii) have similar, although not identical, chromosomal beta-lactamase genes that are inducible. With Enterobacter, the expression of the gene AmpC is repressed, but derepression can be induced by beta-lactams. Of these inducible bacteria, mutants with constitutive hyperproduction of beta-lactamases can emerge at a rate between 105 and 108. These mutants are highly resistant to most beta-lactam antibiotics and are considered stably derepressed.


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!