What causes potassium and sodium loss in diabetic ketoacidosis (DKA)?

Updated: Jan 19, 2021
  • Author: Osama Hamdy, MD, PhD; Chief Editor: Romesh Khardori, MD, PhD, FACP  more...
  • Print
Answer

Glucosuria leads to osmotic diuresis, dehydration and hyperosmolarity. Severe dehydration, if not properly compensated, may lead to impaired renal function. Hyperglycemia, osmotic diuresis, serum hyperosmolarity, and metabolic acidosis result in severe electrolyte disturbances. The most characteristic disturbance is total body potassium loss. This loss is not mirrored in serum potassium levels, which may be low, within the reference range, or even high.

Potassium loss is caused by a shift of potassium from the intracellular to the extracellular space in an exchange with hydrogen ions that accumulate extracellularly in acidosis. Much of the shifted extracellular potassium is lost in urine because of osmotic diuresis.

Patients with initial hypokalemia are considered to have severe and serious total body potassium depletion. High serum osmolarity also drives water from intracellular to extracellular space, causing dilutional hyponatremia. Sodium also is lost in the urine during the osmotic diuresis.


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!