What is the pathophysiology of toxic neuropathy?

Updated: Dec 06, 2017
  • Author: Jonathan S Rutchik, MD, MPH, FACOEM; Chief Editor: Tarakad S Ramachandran, MBBS, MBA, MPH, FAAN, FACP, FAHA, FRCP, FRCPC, FRS, LRCP, MRCP, MRCS  more...
  • Print

Neuropathy may be categorized by presentation (ie, motor or sensory symptoms), electrodiagnostic features, and neuroanatomical location within the peripheral nerve (ie, demyelinating or axonal, neuronopathy, ion channel neuropathy, neuromuscular transmission) or location (ie, cranial or peripheral). Toxic neuropathy refers to those presentations that are caused by drug ingestion, drug or chemical abuse, or industrial chemical exposure from the workplace or from the environment.

Kimura mentions that these may be divided into the following 3 groups based on the presumed site of cellular involvement:

  • Neuropathy affecting the cell body, especially those of the dorsal root ganglion

  • Myelinopathy or schwannopathy with primary segmental demyelination

  • Distal axonopathy causing dying back axonal degeneration

Although distal axonopathy is the most common form, a few agents have been associated with the first 2 types. Antibiotic treatment or cisplatin or pyridoxine toxicity may cause sensory neuronopathy, and segmental demyelination may result from the cardiac medications perhexiline or amiodarone, tetanus toxoid or diphtheria toxin administration, or exposure to lead or arsenic. [1, 2]

Other types of neuropathy, such as sodium channel, neuromuscular transmission, or cranial neuropathies, also have toxic etiologies.

In North America, sodium channel dysfunction may be the result of ciguatera toxin from reef fish or saxitoxin from shellfish. This often presents as an acute or subacute illness. Puffer fish may be intoxicated with tetrodotoxin in Japan. Neuromuscular transmission dysfunction is associated most commonly with organophosphate intoxication; however, envenomation from snake bites or botulism may be as serious a culprit. Cranial neuropathies affecting isolated nerves are uncommon. Trichloroethylene (TCE) has been associated with trigeminal neuropathy, and ethylene glycol may affect the facial nerve. The existence of these syndromes has been revealed by facial nerve and blink electrophysiologic studies (see Causes).

Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!