What is the role of adenotonsillectomy in the treatment of childhood obstructive sleep apnea (OSA)?

Updated: Feb 13, 2019
  • Author: Mary E Cataletto, MD; Chief Editor: Denise Serebrisky, MD  more...
  • Print
Answer

In the pediatric population, most obstructive sleep apnea is related to tonsillar hypertrophy or adenoid hypertrophy. Adenotonsillectomy is curative in most instances. Children with obstructive sleep apnea who undergo adenotonsillectomy demonstrate improvement in measures of neurocognitive function.

Certain children who are known to have a high risk of postoperative complications should only undergo surgery at institutions that possess pediatric intensive care facilities (PICUs). This high-risk group includes children younger than 3 years and those with craniofacial abnormalities, failure to thrive, hypotonia, morbid obesity, a history of previous airway trauma, and severe abnormalities on polysomnography (respiratory disturbance index [RDI] >40 or oxygen desaturations < 70%).

Although obstructive sleep apnea has multiple etiologies in children, once the diagnosis of obstructive sleep apnea has been established and its severity assessed, adenotonsillectomy is usually the first line of treatment. Tonsillotomy, rather than tonsillectomy, has been recently advocated as equally effective with less postoperative morbidity. Most of these surgical procedures can be performed safely on an outpatient basis.

Notwithstanding the surgery being planned, carefully consider the existence of risk factors for perioperative morbidity and adverse outcomes in the surgical planning. Children with severe obstructive sleep apnea, children younger than 2 years, and children with craniofacial syndromes or other conditions that contribute to the pathophysiology of obstructive sleep apnea are at a higher risk for surgical complications. For example, in children with severe obstructive sleep apnea, the existence of pulmonary hypertension and right ventricular dysfunction has been linked to the onset of cardiac arrhythmias during the process of anesthesia induction. Thus, preoperative echocardiographic assessment is indicated in these patients.

Similarly, for all of the risk categories mentioned above, an obtunded patient in whom the anesthetic effects on upper airway tone and reflexes are still compromised has a high risk of postsurgical upper airway obstruction.

Finally, the development of idiopathic pulmonary edema following the relief of upper airway obstruction has also been noted. Therefore, in this high-risk group of patients, pursue overnight cardiorespiratory monitoring in the intensive care unit.

Additional surgical options may include uvulopalatopharyngoplasty (see below), epiglottoplasty, and mandibular advancement procedures. However, most facilities lack extensive experience with these procedures in children, and the overall outcomes from these interventions have not been appropriately documented in the pediatric population. Extensive surgical intervention in the upper airway of the child may lead to decreased oral-motor functioning (ie, increased risk of aspiration) and, thus, multiple long-term complications. Therefore, seriously consider nonsurgical alternatives before recommending additional surgery.

A study by Mukhatiyar et al compared polysomnography outcomes of extracapsular tonsillectomy and adenoidectomy (ETA) and intracapsular tonsillectomy and adenoidectomy (ITA) in a cross-sectional study of 89 children with obstructive sleep apnea syndrome. The study found that both ETA and ITA are effective modalities to treat children with obstructive sleep apnea syndrome, with comparable surgical outcomes on short-term follow-up. However, the study added that when comorbid diagnoses of both asthma and obesity exist, children with obstructive sleep apnea syndrome are likely to be resistant to treatment with ITA compared with ETA. [23]

Another study sought to determine the prognosis for children with obstructive sleep apnea not treated with adenotonsillectomy who undergo watchful waiting instead. The study found that many candidates for adenotonsillectomy no longer have childhood obstructive sleep apnea syndrome on polysomnography after 7 months of watchful waiting. In this study, 42% of the children resolved and no longer met polysomnographic criteria for OSAS. In practice, a baseline low apnea/hypopnea index (AHI) and normal waist circumference, or low Pediatric Sleep Questionnaire (PSQ), and snoring score, may help identify an opportunity to avoid adenotonsillectomy. [24]

A study by Taylor et al investigated effects of adenotonsillectomy on cognitive test scores in children with obstructive sleep apnea reported small and selective effects on nonverbal reasoning, fine motor skills, and selective attention. [25]  Another study by Lee et al that included 240 nonobese children with OSA reported that adenotonsillectomy led to significant improvement in blood pressure in hyperintensive children with OSA. [26]

 

Go to Surgical Approach to Snoring and Obstructive Sleep Apnea for complete information on this topic.


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!